Assignment 10

Coverage: 16.4 and 16.5 (part) in Text.

Exercises: 16.3 no 33,38 ; 16.4 no 7, 11, 14, 23, 26, 28, 35, 37.
Hand in 16.3 no 33 , 16.4 no 11, 14, 28, 35 by March 29.

Supplementary Problems

1. Verify Green's theorem when the region D is the rectangle $[0, a] \times[0, b]$.
2. Let D be the parallelogram formed by the lines $x+y=1, x+y=3, y=2 x-3, y=2 x+2$. Evaluate the line integral

$$
\oint_{C} d x+3 x y d y
$$

where C is the boundary of D oriented in anticlockwise direction. Suggestion: Try Green's theorem and then apply change of variables formula.
3. Let $F=M \mathbf{i}+N \mathbf{j}$ be a smooth vector field which is defined in \mathbb{R}^{2} except at the origin. Suppose that it satisfies the component test $M_{y}=N_{x}$. Show that for any simple closed curve γ enclosing the origin and oriented in positive direction, one has

$$
\oint_{\gamma} M d x+N d y=\varepsilon \int_{0}^{2 \pi}[-M(\varepsilon \cos \theta, \varepsilon \sin \theta) \sin \theta+N(\varepsilon \cos \theta, \varepsilon \sin \theta) \cos \theta] d \theta
$$

for all sufficiently small ε. What happens when γ does not enclose the origin?

